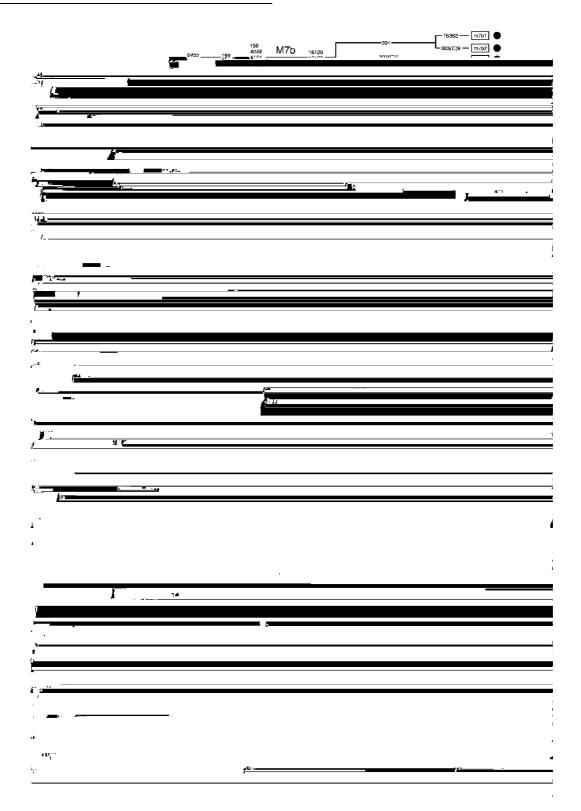
ARTICLE

A combination of three common inherited mitochondrial DNA polymorphisms promotes longevity in Finnish and Japanese subjects

Anna-Kai a Niemi^{1,2}, J₄kka S Moilanen^{1,2}, Ma a hi Tanaka³, An^A i Her onen⁴, Mikko H₄rme⁵, Terho Leh imaki⁶, Ya ₄michi Arai⁷, Nob₄lo hi Hiro e⁷ and Kari Majamaa^{*,1,2}

¹ Drttr	, rt,	, F	d; ² C	r C t ,	r tH t,
, F d; ³ D r	ttGr,G	Ιt	t I tt	tt Bt	,K _r,J ;
⁴ , rtr Grt	, r	• H	t, rt	r,	r,F
r, dI	, rt	r	d	d r	r_tH t, r,
F d; ⁶ D rt t	C C rt,	r 1	r tH t	, r,F	d; ⁷ DrttGrrt
d,K r	t d,	, J			

Mitochondrial DNA (mtDNA) coding region polymorphisms, as well as the 150T polymorphism in the noncoding region, have been associated with longevity. We have studied here the association of 150T with longevity further and assessed differences in this association between various mtDNA haplogroups. We analysed a sample of 321 very old subjects and 489 middle-aged controls from Finland and Japan. 150T was more frequent among the very old than among the controls in both the Finnish and Japanese subjects. Interestingly, the association was not similar in all haplogroups, and a stratified analysis revealed that two additional common polymorphisms, 489C and 10398G, modified the association between 150T and longevity. These findings suggest that longevity is partly determined by epistatic interactions involving these three mtDNA loci. *European Journal of Human Genetics* advance online publication, 13 October 2004; doi:10.1038/sj.ejhg.5201308


Keywords: mitochondrial DNA; longevity; control region; epistasis; association study; phylogenetic analysis; haplogroup

Introduction

Mi ochondrial DNA (m DNA) i a ma ernalli inheri ed genome ha encode 22' RNA, ' o rRNA and 13 lb1ni of 'he re pira orl chain comple e and ATP lin ha e. The e comple e ca all e 'he reac ion of o ida i e pho phorilla ion 'ha prodice ATP and al o con ribi e 'o o igen free radical, which are 'ho1gh' o plai a role in 'he aging proce .¹ In ere 'ingli, longe i how ma ernal inheri ance.² Unipareri al inheri ance and high m_{\perp} a ion ra e ha e led o m DNA lineage (haplogroup), which are defined bl ancien pollmorphi m and charac eri ed bl con iderable aria ion. The European popula ion i almo⁴ e clu i ell di⁴ rib<u>1</u> ed among⁴ he nine haplogroup de igna ed a H, I, J, K, T, U, V, W and X, wherea haplogroup A, B, C, D, F, G and cer ain <u>ubclu</u>⁴ er of macrohaplogroup M and N are charac eri⁴ ic ⁴ o A ian popula ion, hapLeh a 5178A (charac eri ing haplogrolp D) in ^hhe Japane e^7 and 9055A (charac eri ing haplogrolp K) in ^hhe French⁸ and Iri h,⁹ and m DNA haplogrolp J in ^hhe f alian ¹⁰ and ^hhe Finn .¹¹ Fit hermore, ^hhe 150T pollmorphi m ¹ hin a 1.1 kb noncoding con rol region of m DNA ha been reported ^ho be more pre alen in cen enarian ^hhan in con rol .¹² In ere ^hingll, 150T i pre en in e eral haplogrolp among ^hhe global popla-^hion incliding haplogrolp D and J.¹³ In ^hhi ^hidl me T2, or U5. Therefore, pollmorphi m near he origin of he heat 1 and replication could e plain he a ociation be meen longe to 1 and the plagroup J2, by no he a ociation be meen longe to 1 and D5 and M7b.

150C>T pollmorphi m émerged epara ell in he earll e ol↓ ion of 'he E⊥ropean ↓bhaplogro↓p J2, T2 and U5, and of he A ian \downarrow bhaplogro \downarrow p D5, M7b and N9a, b \downarrow ha onll occa ionall been no ed el e, here in he m DNA philogenil. Sibhaplogroip D5 and M7b of he Japane e bélong [^] o m DNA macrohaplogro⊥p M, _Mhich ha di erged from African haplogroup L3 and from macrohaplogro1p N ome 60 000 lear ago.¹⁸ On' he o her hand, N9a of he Japane e and J2, T2 and U5 of he Finn belong [^]o macrohaplogro₄p N. Mo[^] of [^]he haplogro₄p in macrohaplogro₄p N harbo₄r an ancien⁴ 10398G>A m⁴ a-[^] ion, which al er [^] he amino acid 114 in [^] he MTND3 gene, b haplogro \downarrow p J ha e perienced a back-m \downarrow a ion a hi i e re ling in he 10398G allele in common h macrohaplogroup M and, herefore, common i h D5 and M7b. In addi ion, haplogro₄p J harbo₄r ^he con rol region m_{\downarrow} a ion 489T>C, which all o occ trred each in he e ol \downarrow ion of macrohaplogro \downarrow p M. O \downarrow r da a h \downarrow homed ha 150T i a ocia ed the longe i in the bhaplogroup J2, D5 and M7b⁴ ha⁴ harbo₄r 10398G and 489C, b₄⁴ no⁴ in ↓bhaplogro↓p T2, U5 and N9a[^]ha[^] lack[^]he la[^]er[^]no pollmorphi m . The a ocia ion be seen a combina ion

Mitochondrial DNA polymorphisms in longevity A-K Niemi *et al*

