Mi ochondrial DNA Anal i of Ancien Per ian Highlander

K - S $t^{1*}N$ $A t^{2}S t^{2}S$ $t^{4}S$ $t^{4}S$ $t^{4}S$ $t^{4}S$ $t^{4}S$ $t^{1}D$ $t^{1}D$ $t^{2}S$ $t^{4}S$ $t^{4}S$ t

in alla jon and oad and i, a chi ec, al and ce amic, le, he hi o, of Pa ca cancha da e back o he eign of he Inca king To a Inca (on of he king Pachac i Inca Y an i), a o imael in he lae 15 h cen, (Kendall, 1985). Ba ed on a chi ec, e, ce amic, and o he a ifac, fo nd in a ocia ion, he b ial hat Bingham e cata ed a Pa ca cancha and Pa allac a can be a igned o he e iod of he Inca con, ol of he U bamba Valle, fom ca. mid-15 h o ea! 16 h cen, ie (Bingham, 1913; Kendall, 1985; MacC d, 1923).

Ote he a 20 ea, in addition o he afo emenioned ok led b Kendall, he e ha been m ch effo o el cida e Inca and e-Inca occ a jon along he "Sa-

e, ed in the HVR 1 region. F the, charactia aton of

inde enden l , $\;$ ing he mono le PCR me hod o ma imi e he ob ne of PCR. A 1-µl ali o of he PCR od c a e a a ed b elec o ho e i in an 8-cm na i e ol ac lamide gel (10% T, 5% C) con aining 1 \times TBE b ffe (H 8.0) i h nning b ffe (0.5 \times TBE, H 8.0). DNA band e e de ec ed b l ac iole i adia ion af e aining i h e hidi m b omide (Fig. 2).

Da a anal i

With im of ed kno ledge of the global m DNA the interest of the polar manner of the control of the polar month of the polar mon

To el cida e biological ela jon hi he4420-1..,4493a

	nal i ³	14318															C	C	C				-											C	C	C		i	ن د	د
	APLP anal	8794		\boldsymbol{T}	\boldsymbol{T}																																			-
		5178																																			A			
		$10382 - 10465 \ (10000 +)$		CRS	CRS	CRS	CRS	CRS	ND	CRS	CRS	CRS	CRS	CRS	CRS	CRS	398 400	398 400	ND		CRS	CRS	CRS	CRS	CRS	CRS	CRS	CRS	CRS	CRS	CRS	CRS	398	398 400	398 400	398 400	398 400		398 400	027 400
N	a jon in egmen 1	$128-267^2$		146235	146235	146 153 235 260	CRS	143	143	146 215	214	231N	146215	143	CRS	CRS	146 249d	146 249d	249d		143	146215	214234	152	152	$_{ m CRS}$	CRS		$143\ 210$	152, 204	CRS	143	CRS	146 195 249d			CRS			
N_{\cdot}	* M	16209 - 16402 (16000 +)		223 290 319 362	223 290 319 362	217 223 266 290 319 343T 362	217 272 362	217 289	217 289	217	217 228 379N	214 217 262	217 278	217 357	217 362	217 261 319	223 298 325 327	223 298 325 327	223 298 325 327		217 289	217	217 296N 321 363 390	217	217	217	217	217 268 348 378 379	217 294	217	217 261	217 261N 357	217 381	223 298 325 327	223 246N 298 325 327 373	223 298N 325N 327	325 362N		223 298 325 327	779 770 970 971
$ABLE \ 3.$ I	Ma e nal	line		A^* -1	A^* -1	A*-2	B4*-1	B4*-2	B4*-2	B4*-3	B4*-4	B4*-5	B4*-6	B4*-7	B4*-8	B4a-1	C*-1	C*-1	C*-2		B4*-2	B4*-3	B4*-9	B4*-10	B4*-10	B4*-11	B4*-11	B4*-12	B4*-13	B4*-14	B4a-2	B4a-3	B*-1	C*-1	C*-3	C*-1?	D*-1	į	C*-1	C:-‡
		Ha log,o		A^*	A^*	A^*	B4*	B4*	B4*	B4*	B4*	B4*	$B4^*$	B4*	B4*	B4a	*	č	*		B4*	$B4^*$	$\mathrm{B4}^{*}$	$B4^*$	$B4^*$	B4*	B4*	B4*	B4*	$\mathrm{B4}^{*}$	B4a	B4a	B*	č	*	<u>*</u>	ů*	i	<u>ٿ</u> ڙ	ۮؙ
	Si e and ecimen		Pa ca cancha	195	208	216	192	213	198	203	210	212	214	227	233	230	193	204	211	Pa allac a	680	978	681	989	689	687	974	981	686	229	683	926	678	682	975	929	214	Над	899	169

9 p

etal., 1999). CRS denote that e ence of egmenti identical protection indicate not determined. ol mo, hic ie aen mbe ed acco ding peried CRS (Ande ¹ All

ecote and e encing a e of 61.5% and 70.8%, eectiel. In conta of even individ al fom the
H a a, onl o (0.28.6%) e e cce f ll e enced.
Ha log o di lib jon for the o al am le a a
follo: 8.6% A, 65.7% B, 22.9% C, and 2.9% D. Halog o f e encie of conem o a Ame indian o lajon and ancien no h coa am le a e al o ho n in
Table 4. F- a i c f om ha log o f e encie among
egional o la jon a e ho n in Table 5. An e acte
of differentation bet een each ai of o la jon
evealed a j icall ignican difference e ce beeen he ancien highlande and conem o a cen al
Andean o la jon (ignican F = 0.180 ± 0.054).

To inve iga e he ela jon hi among he a elli e
comm ni je of he o al e a e of Mach Picch, m DNA
e ence of Pa ca cancha and Pa allac a e e com a ed.
Ha log o f e encie of Pa ca cancha and Pa allac a
a e ho n in Table 6. Gene ic dife i e l for he e
f o i e a e ho n in Table 7. Mean n mbe of ai i e
difference and n cleo ide dive i a e light la ge, in
he Pa ca cancha.

DISCUSSION

Haplogro p pro le of indi id al e amined in he pre en d

We fond hat ha log o B a he motife entamong kele al am le anal ed in he Inca-e iod e idento of he U bamba Valle, follo ed b ha log o C, A, and nall D. The motifier feat e of he ha log o o le of individ al e amined in the ental of 35 individ al; Table 3 and 4). Cla if ing individal in o maternal line e led in ha log o B hat ing at leat 18 different line in 23 individal. In o he od, he high feen of ha log o B i no tated be he concentation of individal on a eci c maternal line.

Ha log o B i he common ha log o in con em oa Cen al Andean o la ion. When he ha log o
o le of he e ancient e ident of he U bamba Valle
a com a ed i h hat of o he So h Ame ican o
la ion, he fo me ho ed a clear o imit o he mode n
Cen al Andean o la ion hat a ed i ib ed ima il
in he Pe vian and Bolivian highland (Table 4). Thi
nding i not i ing, con ide ing he highland loca ion
of he da ea.

of he d a ea.

On he o he hand, he ancien highlande con ideall difference indicated to the common of a chaeological edidence indicate in image of a chaeological edidence indicate in image of a la in eac ion be een he ancien no hoco allo o la ion and con em o anco Ec ado ian and Colombian o la ion (Shimada, 1995, 1999; Shimada e al., 1997, 2000). Rela idel high fee encie of ha

A eologia e Hi p ia del Pe) and Ja ane e ho og ahe Y aka Yo hii fo hei a i ance in he collection
of poh am le ed in he m DNA anal i . Re each
b K.-I.S. fo hi t d a o ed b G an in-Aid
fo Scieni c Re each 13575017 f om he Mini to of
Ed ca ion, Science, S o and C l t e, Ja an.

LITERATURE CITED

- Adachi N, Dodo Y, Oh hima N, Doi N, Yoneda M, Ma, m, a H. 2003. Mo, hologic and gene ic evidence fo, he kin hi of j venile kele al ecimen f om a 2,000 ea old do ble b i i e, Hokkaido, Ja an. An h o ol Sci 111:347-363.
- Adachi N, Ume K, Takiga a W, Saka e K. 2004. Ph logene ic anal i of he h man ancien mi ochond ial DNA. J A chaeol Sci 31:1339-1348.
- Alte -Silta J, San o MDS, G ima ae PEM, Fe ei a ACS, Bandel HJ, Pena SDJ, P ado VF. 2000. The ance of B a ilian m DNA linage Am J H m Gene 67:444-461.
- And e RM, K backa I, Chinne PF, Ligh o le RN, T n-b il DM, Ho ell N. 1999. Reanal i and et i ion of he Cambidge effecte e ence fo h man mi ochond ial DNA. Na Gene 23:147.

 Baille G, Ro hhamme F, Ca ne e FR, B at CM, Bianchi NO. 1994. Fo nde mi ochond ial ha lot e in Ame indian o la ion. Am J H m Gene 55:27-33.
- Bandel HJ, Lahe mo P, Richa d M, Maca la V. 2001. De ecing e o in mDNA da a b h logene ic anal i . In J Legal Med 115:64-69.
- aj a O, Kolman CJ, Be mingham E. 1995. Mi ochond ial DNA dive, i, in he K na Ame ind of Panama. H m Mol Gene, 4:921-929.
- Bingham H. 1912. P_elimina e o_t of the Yale Pe_t ian e edi jon. B ll Am Geog Soc 44:20–26. Bingham H. 1913. In the onde land of Pe_t. Na l Geog Mag
- 24:387-573

- 24:387-573.

 Bingham H. 1916. F he e lo a ion in he land of he Inca. Na l Geog Mag 29:431-473.

 Bingham H. 1930. Mach Picch, a ci adel of he Inca. Re o of he e lo a ion and e cata ion made in 1911, 1912 and 1915 nde he a ice of Yale Unite it and he Na ional Geog a hic Societ. Ne Haten: Yale Unite it Pe.

 B ge RL, Sala a LC. 2003. Peface. In: B ge R, Sala a LC, edi p. The 1912 Yale Pertian cient ce edition collection from Mach Picch: h man and animal emain, Yale Unite it blication in an hoolog 85. Ne Haten: Peabod M e m of Natial History, Yale Unite it. iii. The collection of o gological material from Mach Picch. Memoi of he Connectic Academ of Artand Science 5. Ne Haten: The Moeho e and Talo.

 Fating on IS. 1995. The m mm, e at and alace of Inka H a na Ca acat Q i eg anca. Ta an in 1:55-65.

 Gin he C, Co ach D, Penacino GA, Re JA, Ca ne e FR, H
- Gin he C, Co ach D, Penacino GA, Re JA, Ca ne e FR, H
 MH, Ande on A, J J, Sal ano FM, King MC. 1993.
 Gene ic ta ia ion among he Ma che Indian f om he Pa agonian egion of A gen ina: mi ochond ial DNA e ence
 ta ia ion and allele f e encie of ete al n clea gene. EXS
- Ho ai S, Kondo R, Nakaga a-Ha τρ i Y, Ha a hi S, Sonoda S, Tajima K. 1993. Peo ling of he Ame ica, fo nded b fo majo lineage of mi ochond iai DNA. Mol Biol E tol 10:23–47. Kendall A. 1974. A chi ec e and lanning a he Inca i e in he C ichaca a ea. Bae le A chi 22:73-137.

67:211–219.