Derek F Kimball Faculty Profile

Photo of Derek Kimball

Derek  F  Kimball

Professor

Department of Physics

Prof. Derek F. Jackson Kimball uses techniques of experimental atomic physics and nonlinear optics for precision tests of the fundamental laws of physics.  In particular, his research focuses on searches for exotic spin-dependent interactions that may have a connection to dark matter or dark energy.

Prof. Jackson Kimball established the first externally funded physics research program in the history of California State University – East Bay. He has mentored over sixty undergraduate students in his research laboratory. More than twenty of his students have gone on to graduate physics programs, and three of his students have been awarded National Science Foundation Graduate Research Fellowships. Former students now have careers at Intel, Google, Tesla, Lawrence Berkeley and Lawrence Livermore National Laboratories, for example. 

Prof. Jackson Kimball received his Ph.D. in 2005 from the University of California at Berkeley under the mentorship of Prof. Dmitry Budker, where he studied nonlinear magneto-optical rotation and its application to precision measurement of atomic spin precession. Prof. Jackson Kimball is the co-author of Atomic Physics: an exploration through problems and solutions (Oxford University Press, 2008), Optical Magnetometry (Cambridge University Press, 2013), and over 70 peer-reviewed research articles. 

Prof. Jackson Kimball served as the Chair of the California State University – East Bay Department of Physics from 2011-14 and also during 2016. He is the 2020-2021 Chair of the American Physical Society's Topical Group on Precision Measurements and Fundamental Constants. 

He was named California State University – East Bay’s 2011-12 George and Miriam Phillips Outstanding Professor and in 2019 received the Spitzer Distinguished Science Faculty Award.

In 2018, Prof. Jackson Kimball was elected a fellow of the American Physical Society "for outstanding contributions to the development of new techniques in atomic magnetometry and their application to fundamental-physics research, including testing the fundamental symmetries of nature and searches for ultralight dark-matter candidates."

Prof. Jackson Kimball uses techniques of experimental atomic physics and nonlinear optics for precision tests of the fundamental laws of physics.  In particular, his research focuses on searches for exotic spin-dependent interactions that may have a connection to dark matter or dark energy.

An experiment carried out at Cal State East Bay to search for a spin-gravity coupling of the proton improved constraints on such effects by three orders-of-magnitude. Related projects with several different collaborators have established some of the most stringent constraints on exotic dipole-dipole interactions of electrons, neutrons, and protons at the atomic scale.

Prof. Jackson Kimball is a co-inventor of the Global Network of Optical Magnetometers to search for Exotic physics (GNOME) and is the GNOME collaboration’s Scientific Coordinator. The GNOME is sensitive to transient effects that could arise if the Earth passed through a compact dark-matter object such as an axion "star" or domain wall, or bursts of exotic low-mass fields (ELFs) generated by cataclysmic astrophysical events such as black hole mergers.

He is also the Scientific Coordinator of the Cosmic Axion Spin Precession Experiment (CASPEr), an experiment that uses the techniques of nuclear magnetic resonance (NMR) to search for signatures of oscillating ultralight dark matter fields.

Prof. Jackson Kimball, along with colleagues Alex Sushkov and Dmitry Budker, predicted that micron-scale, levitated ferromagnets would behave as gyroscopes in sufficiently small magnetic fields. Devices based on such ferromagnetic gyroscopes enable rapid averaging of quantum uncertainty in spin precession measurements, a development that could potentially improve sensitivity to exotic physics by many orders of magnitude.

  • 1998 B.A. (Physics and Mathematics), University of California at Berkeley
  • 2002 M.S. (Physics), University of California at Berkeley
  • 2005 Ph.D. (Physics), University of California at Berkeley
Spring Semester 2025
Course #SecCourse TitleDaysFromToLocationCampus
PHYS 13601Physics for Scientists IIMWF9:00AM9:50AMBC-0270
PHYS 1361APhysics for Scientists IIM5:00PM7:30PMSC-N247
PHYS 46001AstrophysicsMWF11:00AM11:50AMSC-S204

Books

Dmitry Budker, Derek F. Kimball, and David P. DeMille. Atomic Physics: an exploration through problems and solutions. (Oxford University Press, Oxford, 2004).

Dmitry Budker, Derek F. Kimball, and David P. DeMille. Atomic Physics: an exploration through problems and solutions (2nd Edition). (Oxford University Press, Oxford, 2008).

Dmitry Budker and Derek F. Jackson Kimball, eds. Optical Magnetometry. (Cambridge University Press, Cambridge, 2013).

Selected Articles

1. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Nonlinear magneto-optics and reduced group velocity of light in atomic vapor with slow ground state relaxation, Phys. Rev. Lett. 83(9), 1767-70 (1999).

2. D. F. Kimball, D. Clyde, D. Budker, D. DeMille, S. J. Freedman, S. Rochester, J. E. Stalnaker, and M. Zolotorev, Collisional perturbation of states in atomic ytterbium by helium and neon, Phys. Rev. A 60(2), 1103-11 (1999).

3. A.-T. Nguyen, D. Brown, D. Budker, D. DeMille, D. F. Kimball, and M. Zolotorev, Search for parity nonconservation in atomic dysprosium, in Parity Violation in Atoms and Electron Scattering. Edited by B. Frois and M.-A. Bouchiat (World Scientific, New York, 1999).

4. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Nonlinear Magneto-optical Rotation via Alignment-to-Orientation Conversion, Phys. Rev. Lett. 85(10), 2088-91 (2000).

5. D. Budker, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and M. Zolotorev, Sensitive Magnetometry based on nonlinear magneto-optical rotation, Phys. Rev. A 62(4), 043403 (2000).

6. S. M. Rochester, D. S. Hsiung, D. Budker, R. Y. Chiao, D. F. Kimball, and V. V. Yashchuk. Self-rotation of resonant elliptically polarized light in collision-free rubidium vapor. Phys. Rev. A 63(4), 043814 (2001).

7. D. F. Kimball, Parity-nonconserving optical rotation on the 6s6p 3P0 - 6s6p 1P1 transition in atomic ytterbium, Phys. Rev. A 63(5), 052113 (2001).

8. B. DeBoo, D. F. Kimball, C.-H. Li, and D. Budker, Multichannel conical emission and parametric and nonparametric nonlinear optical processes in ytterbium vapor, J. Opt. Soc. Am. B 18(5), 639 (2001).

9. D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Nonlinear electro- and magneto-optical effects related to Bennett structures, Phys. Rev. A 65(3), 033401 (2002).

10. D. F. Kimball, D. Budker, D. English, C.-H. Li, A.-T. Nguyen, S. M. Rochester, A. Sushkov, V. V. Yashchuk, and M. Zolotorev, Progress towards fundamental symmetry tests with nonlinear optical rotation, in Art and Symmetry in Experimental Physics. American Institute of Physics Conference Proceedings, no.596, edited by D. Budker, P. H. Bucksbaum, and S. J. Freedman (American Institute of Physics, New York, 2001), pp.84-107.

11. D. S. English, D. F. Kimball, C.-H. Li, A.-T. Nguyen, S. M. Rochester, J. E. Stalnaker, V. V. Yashchuk, D. Budker, S. J. Freedman, and M. Zolotorev, Atomic Tests of Discrete Symmetries at Berkeley, in Art and Symmetry in Experimental Physics. American Institute of Physics Conference Proceedings, no.596, edited by D. Budker, P. H. Bucksbaum, and S. J. Freedman (American Institute of Physics, New York, 2001), pp.108-119.

12. D. Budker, D. F. Kimball, V. V. Yashchuk, and M. Zolotorev, Nonlinear magneto-optical rotation with frequency-modulated light, Phys. Rev. A 65(5), 055403 (2002).

13. E. B. Alexandrov, M. V. Balabas, D. Budker, D. English, D. F. Kimball, C.-H. Li, and V. V. Yashchuk, Light-induced desorption of alkali-metal atoms from paraffin coating, Phys. Rev. A 66(4), 042903 (2002).

14. A. B. Matsko, I. Novikova, G. R. Welch, D. Budker, D. F. Kimball, and S. M. Rochester, Vacuum squeezing in atomic media via self-rotation, Phys. Rev. A 66(4), 043815 (2002).

15. D. Budker, W. Gawlik, D. F. Kimball, S. M. Rochester, V. V. Yashchuk, and A. Weis, Resonant nonlinear magneto-optical effects in atoms, Rev. Mod. Physics 74(4), 1153-1201 (2002).

16. D. Budker, D. F. Kimball, S. M. Rochester, and J. T. Urban, Alignment-to-orientation conversion and nuclear quadrupole resonance, Chem. Phys. Lett. 378(3-4), 440-448 (2003).

17. V. V. Yashchuk, D. Budker, W. Gawlik, D. F. Kimball, Yu. P. Malakyan, and S. M. Rochester, Selective Addressing of High-Rank Polarization Moments, Phys. Rev. Lett. 90(25), 253001 (2003).

18. Yu. P. Malakyan, S. M. Rochester, D. Budker, D. F. Kimball, and V. V. Yashchuk, Nonlinear magneto-optical rotation of frequency-modulated light resonant with a low-J transition, Phys. Rev. A 69(1), 013817 (2004).

19. V. V. Yashchuk, J. Granwehr, D. F. Kimball, S. M. Rochester, A. H. Trabesinger, J. T. Urban, D. Budker, and A. Pines, Hyperpolarized Xenon Nuclear Spins Detected by Optical Atomic Magnetometry, Phys. Rev. Lett. 93(16), 160801 (2004).

20. M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, J. E. Stalnaker, A. O. Sushkov, and V. V. Yashchuk, Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93(17), 173002 (2004).

21. E. B. Alexandrov, M. Auzinsh, D. Budker, D. F. Kimball, S. M. Rochester, and V. V. Yashchuk, Dynamic effects in nonlinear magneto-optics of atoms and molecules, J. Opt. Soc. Am. B 22(1), 7-20 (2005).

22. D. Budker, L. Hollberg, D. F. Kimball, J. Kitching, S. Pustelny, and V. V. Yashchuk, Microwave transitions and nonlinear magneto-optical rotation in anti-relaxation-coated cells, Phys. Rev. A 71, 012903 (2005).

23. M. T. Graf, D. F. Kimball, S. M. Rochester, K. Kerner, C. Wong, D. Budker, E. B. Alexandrov, and M. V. Balabas, Relaxation of atomic polarization in paraffin-coated cesium vapor cells, Phys. Rev. A 72, 023401 (2005).

24. S. Pustelny, D. F. Jackson Kimball, S. M. Rochester, V. V. Yashchuk, W. Gawlik, and D. Budker, Pump-Probe nonlinear magneto-optical rotation with frequency-modulated light, Phys. Rev. A 73, 023817 (2006).

25. V. Acosta, M. P. Ledbetter, S. M. Rochester, D. Budker, D. F. Jackson Kimball, D. C. Hovde, W. Gawlik, S. Pustelny, and J. Zachorowski, Nonlinear magneto-optical rotation with frequency-modulated light in the geophysical field range, Phys. Rev. A 73, 053404 (2006).

26. S. Pustelny, D. F. Jackson Kimball, S. M. Rochester, V. V. Yashchuk, and D. Budker, Influence of magnetic-field inhomogeneity on nonlinear magneto-optical resonances, Phys. Rev. A 74, 063406 (2006).

27. S. Pustelny, S. M. Rochester, D. F. Jackson Kimball, V. V. Yashchuk, D. Budker, and W. Gawlik. Nonlinear magneto-optical rotation with modulated light in tilted magnetic fields. Phys. Rev. A 74, 063420 (2006).

28. V. M. Acosta, M. Auzinsh, W. Gawlik, P. Grisins, J. M. Higbie, Derek F. Jackson Kimball, L. Krzemien, M. P. Ledbetter, S. Pustelny, S. M. Rochester, V. V. Yashchuk, and D. Budker, Production and detection of atomic hexadecapole at Earth's magnetic field, Optics Express 16(15), 11423 (2008).

30. T. Karaulanov, M. T. Graf, D. English, S. M. Rochester, Y. Rosen, K. Tsigutkin, D. Budker, M. V. Balabas, D. F. Jackson Kimball, F. A. Narducci, S. Pustelny, V. V. Yashchuk, Controlling atomic vapor density in paraffin-coated cells using light-induced atomic desorption, Phys. Rev. A 79, 012902 (2009).

31. D. F. Jackson Kimball, Khoa Nguyen, K. Ravi, Arijit Sharma, Vaibhav S. Prabhudesai, S. A. Rangwala, V. V. Yashchuk, M. V. Balabas, and D. Budker, Electric-field-induced change of alkali-metal vapor density in paraffin-coated cells, Phys. Rev. A 79, 032901 (2009).

32. D. F. Jackson Kimball, L. R. Jacome, Srikanth Guttikonda, Eric J. Bahr, and Lok Fai Chan, Magnetometric sensitivity optimization for nonlinear optical rotation with frequency-modulated light: Rb D2 line, J. of Appl. Phys. 106, 063113 (2009).

33. V. M. Acosta, A. Jarmola, D. Windes, E. Corsini, M. P. Ledbetter, T. Karaulanov, M. Auzinsh, S. A. Rangwala, D. F. Jackson Kimball, and D. Budker, Rubidium dimers in paraffin-coated cells, New Journal of Physics 12, 083054 (2010).

34. S. J. Seltzer, D. J. Michalak, M. H. Donaldson, M. V. Balabas, S. K. Barber, S. L. Bernasek, M.-A. Bouchiat, A. Hexemer, A. M. Hibberd, D. F. Jackson Kimball, C. Jaye, T. Karaulanov, F. A. Narducci, S. A. Rangwala, H. G. Robinson, A. K. Shmakov, D. L. Voronov, V. V. Yashchuk, A. Pines, and D. Budker, Investigation of Anti-Relaxation Coatings for Alkali-Metal Vapor Cells Using Surface Science Techniques, J. Chem. Phys. 133, 144703 (2010).

35. D. F. Jackson Kimball, Alec Boyd, and D. Budker, Constraints on anomalous spin-spin interactions from spin-exchange collisions, Phys. Rev. A 82, 062714 (2010).

36. J. E. Stalnaker, S. L. Chen, M. E. Rowan, K. Nguyen, T. Pradhananga, C. A. Palm, and D. F. Jackson Kimball, Velocity-selective direct frequency-comb spectroscopy of atomic vapors, Phys. Rev. A 86, 033832 (2012).

37. M. Pospelov, S. Pustelny, M. P. Ledbetter, D. F. Jackson Kimball, W. Gawlik, and D. Budker, Detecting Domain Walls of Axionlike Models Using Terrestrial Experiments, Phys. Rev. Lett. 110, 021803 (2013).

38. M. P. Ledbetter, M. V. Romalis, and D. F. Jackson Kimball, Constraints on Short-Range Spin-Dependent Interactions from Scalar Spin-Spin Coupling in Deuterated Molecular Hydrogen, Phys. Rev. Lett. 110, 040402 (2013).

39. D. F. Jackson Kimball, E. B. Alexandrov, and D. Budker, General principles and characteristics of optical magnetometers, in Optical Magnetometry, edited by D. Budker and D. F. Jackson Kimball (Cambridge University Press, Cambridge, 2013), pp. 3-24.

40. D. F. Jackson Kimball, S. Pustelny, V. V. Yashchuk, and D. Budker, Optical magnetometry with modulated light, in Optical Magnetometry, edited by D. Budker and D. F. Jackson Kimball (Cambridge University Press, Cambridge, 2013), pp. 104-124.

41. D. F. Jackson Kimball, S. K. Lamoreaux, and T. E. Chupp, Tests of fundamental physics with optical magnetometers, in Optical Magnetometry, edited by D. Budker and D. F. Jackson Kimball (Cambridge University Press, Cambridge, 2013), pp. 339-368.

42. Derek F. Jackson Kimball, Ian Lacey, Julian Valdez, Jerlyn Swiatlowski, Cesar Rios, Rodrigo Peregrina-Ramirez, Caitlin Montcrieffe, Jackie Kremer, Jordan Dudley, and C. Sanchez, A dual-isotope rubidium comagnetometer to search for anomalous long-range spin-mass (spin-gravity) couplings of the proton, Annalen der Physik 525(7), 514–528 (2013).

43. Szymon Pustelny, Derek F. Jackson Kimball, Chris Pankow, Micah P. Ledbetter, Przemyslaw Wlodarczyk, Piotr Wcislo, Maxim Pospelov, Joshua R. Smith, Jocelyn Read, Wojciech Gawlik, and Dmitry Budker, The Global Network of Optical Magnetometers for Exotic physics (GNOME): A novel scheme to search for physics beyond the Standard Model, Annalen der Physik 525(8-9), 659–670 (2013).

44. Derek F. Jackson Kimball, Nuclear spin content and constraints on exotic spin-dependent couplings, New J. of Physics 17, 073008 (2015).

45. Shlomi Kotler, Roee Ozeri, and Derek F. Jackson Kimball, Constraints on Exotic Dipole-Dipole Couplings between Electrons at the Micrometer Scale, Phys. Rev. Lett. 115, 081801 (2015).

46. Dmitry Budker and Derek F. Jackson Kimball, Paper Craft, Nature 529, 427 (2016).

47. Derek F. Jackson Kimball, Alexander O. Sushkov, and Dmitry Budker, Precessing Ferromagnetic Needle Magnetometer, Phys. Rev. Lett. 116, 190801 (2016).

48. D. F. Jackson Kimball, J. Dudley, Y. Li, S. Thulasi, S. Pustelny, D. Budker, and M. Zolotorev, Magnetic shielding and exotic spin-dependent interactions, Phys. Rev. D 94, 082005 (2016).

49. Filip Ficek, Derek F Jackson Kimball, Mikhail G Kozlov, Nathan Leefer, Szymon Pustelny, and Dmitry Budker, Constraints on exotic spin-dependent interactions between electrons from helium fine-structure spectroscopy, Phys. Rev. A 95, 032505 (2017).

50. Derek F. Jackson Kimball, Jordan Dudley, Yan Li, and Dilan Patel, In situ measurement of light polarization with ellipticity-induced nonlinear magneto-optical rotation, Phys. Rev. A 96, 033823 (2017).

51. Derek F. Jackson Kimball, Jordan Dudley, Yan Li, Dilan Patel, and Julian Valdez, Constraints on long-range spin-gravity and monopole-dipole couplings of the proton, Phys. Rev. D 96, 075004 (2017).

52. Tao Wang, Derek F. Jackson Kimball, Alexander O. Sushkov, Deniz Aybas, John W. Blanchard, Gary Centers, Sean R. O’ Kelley, Arne Wickenbrock, Jiancheng Fang, and Dmitry Budker, Application of spin-exchange relaxation-free magnetometry to the Cosmic Axion Spin Precession Experiment, Physics of the Dark Universe 19, 27 (2018).

53. A. Garcon, D. Aybas, J. Blanchard, G. Centers, N. Figueroa, P. W. Graham, D. F. Kimball, S. Rajendran, M. G. Sendra, and A. Sushkov, The Cosmic Axion Spin Precession Experiment (CASPEr): a dark-matter search with nuclear magnetic resonance, Quantum Science and Technology 3, 014008 (2018).

54. D. F. Jackson Kimball, Viewpoint: Spin Gyroscope is Ready to Look for New Physics, Physics 11, 5 (2018).

55. D. F. Jackson Kimball, D. Budker, J. Eby, M. Pospelov, S. Pustelny, T. Scholtes, Y. V. Stadnik, A. Weis, and A. Wickenbrock, Searching for axion stars and Q-balls with a terrestrial magnetometer network, Phys. Rev. D 97, 043002 (2018).

56. Filip Ficek, Pavel Fadeev, Victor V. Flambaum, Derek F. Jackson Kimball, Mikhail G. Kozlov, Yevgeny V. Stadnik, and Dmitry Budker, Constraints on Exotic Spin-Dependent Interactions Between Matter and Antimatter from Antiprotonic Helium Spectroscopy, Phys. Rev. Lett. 120, 183002 (2018).

57. M.S. Safranova, D. Budker, D. DeMille, D. F. Jackson Kimball, A. Derevianko, and C.W. Clark, Search for new physics with atoms and molecules, Rev. Mod. Phys. 90, 025008 (2018).

58. Teng Wu, John W. Blanchard, Derek F. Jackson Kimball, Min Jiang, and Dmitry Budker, Nuclear-Spin Comagnetometer Based on a Liquid of Identical Molecules, Phys. Rev. Lett. 121, 023202 (2018).

59. S. Afach, D. Budker, G. DeCamp, V. Dumont, Z. D. Grujić, H.Guo, D. F. Jackson Kimball, T. W. Kornack, V. Lebedev, W. Li, H. Masia-Roiga, S. Nix, M. Padniuk, C. A. Palm, C. Pankow, A. Penaflor, X. Peng, S. Pustelny, T. Scholtes, J. A. Smiga, J. E. Stalnaker, A. Weis, A. Wickenbrock, and D. Wurm, Characterization of the Global Network of Optical Magnetometers to search for Exotic physics (GNOME), Physics of the Dark Universe 22, 162 (2018).

60. Jason Mora, Aracely Cobos, Dominic Fuentes, and Derek F. Jackson Kimball, Measurement of the Ratio between g-Factors of the Ground States of Rb-87 and Rb-85, Annalen der Physik 2018, 1800281 (2018).

61. Tao Wang, Sean Lourette, Sean R. O’Kelley, Metin Kayci, Y. B. Band, Derek F. Jackson Kimball, Alexander O Sushkov, and Dmitry Budker, Dynamics of a Ferromagnetic Particle Levitated over a Superconductor, Physical Review Applied 11, 044041 (2019).

62. Teng Wu, John W. Blanchard, Gary P. Centers, Nataniel L. Figueroa, Antoine Garcon, Peter W. Graham, Derek F. Jackson Kimball, Surjeet Rajendran, Yevgeny V. Stadnik, Alexander O. Sushkov, Arne Wickenbrock, and Dmitry Budker, Search for Axionlike Dark Matter with a Liquid-State Nuclear Spin Comagnetometer, Phys. Rev. Lett. 122, 191302 (2019).

63. Teng Wu, John W. Blanchard, Gary P. Centers, Nataniel L. Figueroa, Antoine Garcon, Peter W. Graham, Derek F. Jackson Kimball, Surjeet Rajendran, Yevgeny V. Stadnik, Alexander O. Sushkov, Arne Wickenbrock, and Dmitry Budker, Wu et al. Reply, Phys. Rev. Lett. 123, 169002 (2019).

64. Antoine Garcon, John W. Blanchard, Gary P. Centers, Nataniel L. Figueroa, Peter W. Graham, Derek F. Jackson Kimball, Surjeet Rajendran, Alexander O. Sushkov, Yevgeny V. Stadnik, Arne Wickenbrock, Teng Wu, and Dmitry Budker, Constraints on bosonic dark matter from ultralow-field nuclear magnetic resonance, Science Advances 5, eaax4539 (2019).

65. Hector Masia-Roig, Joseph A. Smiga, Dmitry Budker, Vincent Dumont, Zoran Grujic, Dongok Kim, Derek F. Jackson Kimball, Victor Lebedev, Madeline Monroy, Szymon Pustelny, Theo Scholtes, Perrin C. Segura, Yannis K. Semertzidis, Yun Chang Shin, Jason E. Stalnaker, Ibrahim Sulai, Antoine Weis, and Arne Wickenbrock, Analysis method for detecting topological defect dark matter with a global magnetometer network, Physics of the Dark Universe 28, 100494 (2020).

66. Dmitry Budker, Roger W. Falcone, Derek F. Jackson Kimball, Valeriy V. Yashchuk, and Alexander Zholents, In Memoriam: Max S. Zolotorev, 1941-2020, Physics Today 73, DOI:10.1063/PT.6.4o.20200504a (2020).

67. Wenxiang Hu, Matthew M. Lawson, Dmitry Budker, Nataniel L. Figueroa, Derek F. Jackson Kimball, Allen P. Mills Jr., and Christian Voigt, A network of superconducting gravimeters as a detector of matter with feeble nongravitational coupling, Eur. Phys. J. D 74, 115 (2020).

68. Dmitry Budker, Derek F. Jackson Kimball, and Szymon Pustelny, Sensing a passage through the unknown, CERN Courier 60(4), 25 (2020).

69. D. F. Jackson Kimball, S. Afach, D. Aybas, J. W. Blanchard, D. Budker, G. Centers, M. Engler, N. L. Figueroa, A. Garcon, P. W. Graham, H. Luo, S. Rajendran, M. G. Sendra, A. O. Sushkov, T. Wang, A. Wickenbrock, A. Wilzewski, and T. Wu, Overview of the Cosmic Axion Spin Precession Experiment (CASPEr), in Microwave Cavities and Detectors for Axion Research edited by Gianpaolo Carosi and Gray Rybka (Springer, New York, 2020) pp. 105-121.

70. C. Dailey, C. Bradley, D. F. Jackson Kimball, I. A. Sulai, S. Pustelny, A. Wickenbrock, and A. Derevianko, Quantum sensor networks as exotic field telescopes for multi-messenger astronomy, Nature Astronomy 5, 150 (2021).

71. Pavel Fadeev, Chris Timberlake, Tao Wang, Andrea Vinante, Y. B. Band, Dmitry Budker, Alexander O. Sushkov, Hendrik Ulbricht, and Derek F. Jackson Kimball, Ferromagnetic gyroscopes for tests of fundamental physics, Quantum Science and Technology 6, 024006 (2021).

72. Pavel Fadeev, Tao Wang, Y. B. Band, Dmitry Budker, Peter W. Graham, Alexander O. Sushkov, and Derek F. Jackson Kimball, Gravity Probe Spin: Prospects for measuring general-relativistic precession of intrinsic spin using a ferromagnetic gyroscope, Phys. Rev. D 103, 044056 (2021).

Amherst College, University of California at Berkeley, Argonne National Laboratory, University of Michigan, California State University – East Bay, Contra Costa College, California State University – Fullerton, California State University – San Marcos, Foothill College, Harvard University, Princeton University, International Centre for Theoretical Physics (ICTP) [Italy], Raman Research Institute [India], Korean Advanced Institute for Science and Technology (KAIST), Lawrence Livermore National Laboratory, Lawrence Berkeley National Laboratory, Johannes Gutenberg University [Germany], Helmholtz Institute – Mainz [Germany], Fribourg University [Switzerland], Jagiellonian University [Poland], San Francisco State University, San Jose State University, Stanford University, University of California at Los Angeles (UCLA), University of Nevada at Reno, University of San Francisco, University of California at Merced, Universitat Stuttgart [Germany], Brookhaven National Laboratory, Perimeter Institute [Canada], Gordon Research Conference, DAMOP, Naval Postgraduate School, Humboldt State University, Santa Clara University, Ben-Gurion University [Israel], Boston University, University of Göttingen [Germany], Northwestern University, National Institute of Standards and Technology (NIST) Boulder, Cambridge University [United Kingdom].

RUI: Search for a spin-gravity coupling using laser-addressed atomic gyroscopes, National Science Foundation ($254,150 over 3 years, 2007-10).

Major Research Instrumentation, Recovery and Re-investment: Acquisition of      a Femtosecond Optical Frequency Comb and THz Spectrometer for Atomic, Molecular and Condensed Matter Spectroscopy, National Science Foundation ($393,388 over 1 year, 2010-2011).

RUI: Search for Anomalous Proton Spin Interactions with A Dual-Isotope Rubidium Magnetometer, National Science Foundation ($309,514 over 3 years, 2010-13).

RUI: Search for Anomalous Spin Interactions with Atomic Comagnetometers, National Science Foundation ($299,917 over 4 years, 2013-17).

The Cosmic Axion Spin Precession Experiment, Simons and Heising-Simons Foundations ($457,343 over 5 years, 2015-2020).

Collaborative Research (RUI): Search for Exotic Transient Spin-dependent Signals from Ultralight Dark Matter Fields, National Science Foundation ($306,048 over 4 years, 2017-2021).

 

2018-2021: Chair Line of the American Physical Society’s (APS) Topical Group on Precision Measurements and Fundamental Constants (GPMFC).

2014-2017: Member of the Executive Committee of the APS GPMFC; Chair of Membership Committee.

2017-2020: Member of APS Division of Atomic, Molecular, and Optical Physics (DAMOP) Program Committee; Chair of Precision Measurement Subcommittee (2018-20).

2018 National Academy of Sciences Review Panel for the National Institute of Standards and Technology (NIST) Physical Measurement Laboratory, Time & Frequency Division.

2019 Vice Chair of the Gordon Research Conference on Atomic Physics.

2021 Chair of the Gordon Research Conference on Atomic Physics.

2023 Chair of the Gordon Research Conference on Atomic Physics.